Algebra 2

Review T9: Polynomials

Name: ______ Date: _____

1. Find the sum.

$$(10x^5 - 5x^4 + x + 3) + (-2x^4 - 3x^3 - 4x + 1)$$

2. Find the difference.

$$(3x^5 + 2x^3 - 7x^2 + 5x) - (4x^5 - 2x^3 + 6x^2 - 7)$$

3. Find the product.

$$2x^3(-3x^2+x-2)$$

4. Find the product.

$$(4x^2 + x - 5)(2x + 1)$$

5. Find the product.

$$(x-1)(x+2)(x-3)$$

6. Use Long Division to divide $(2x^4 + 5x^3 + x - 1)$ by $(x^2 - 2x + 1)$. Show all the steps.

7. Use Synthetic Division to divide (3 the correct form!	$3x^4 + x^3 - 2x^2 + 2x - 5$) by $(x + 1)$. Be sure to write you answer in
8. Use Synthetic Division to evaluate	$e f(x) = 5x^4 + 2x^3 - 20x - 6$, when $x = 2$.
9. Describe the end behavior and ho $f(x) = x^4 - 18x^2 - 4x + 2$	w many possible zeros function has.
End behavior:	How many possible zeros:
(bonus point for knowing the name/	/type of function:)
10. Describe the end behavior and h $f(x) = -2x^5 + 2x^4 + 40x^3$	now many possible zeros function has.
End behavior:	How many possible zeros:
(bonus point for knowing the name/	type of function:)

11	Hce	the	granh	tο	answer	the	foll	lowing	allect	ione
TT.	use	uie	grapii	ω	aliswei	uie	101	lowing	quesi	.10115.

Fill in the table with the following information:

y-intercept zeros (x-intercepts) relative maximum relative minimum

X	f(x)

State the open intervals where the function is

Increasing:

Decreasing:

(Bonus point if you can tell me what degree this function is _____)