YES/NO Is the inverse a function? Does the function pass the Horizontal Line Test (HLT)? Use a calculator to find the answer.

1.	f(x)	=	$-x^3$	+	3
	,				

2.
$$f(x) = \sqrt{x - 6}$$

3.
$$f(x) = 2x^2 - 5$$

4.
$$f(x) = 2x^3 - 5$$

5.
$$f(x) = -\sqrt[3]{\left(\frac{2x+4}{3}\right)}$$

6.
$$f(x) = -3\sqrt{\frac{4x-7}{3}}$$

YES/NO Are these functions inverses of each other? Do they reflect over the line y = x? Use a calculator to find the answer.

7.
$$f(x) = 2x - 9$$
 and $g(x) = \frac{x}{2} - 9$

8.
$$f(x) = \frac{x-3}{4}$$
 and $g(x) = 4x + 3$

9.
$$f(x) = \sqrt[5]{\frac{x+9}{5}}$$
 and $g(x) = 5x^5 - 9$

10.
$$f(x) = 7x^{\frac{3}{2}} - 4$$
 and $g(x) = \left(\frac{x+4}{7}\right)^{\frac{3}{2}}$

11. **REASONING** Determine whether each pair of functions f and g are inverses. Explain your reasoning.

a.	x	-2	-1	0	1	2
	f(x)	-2	1	4	7	10

x	-2	1	4	7	10
g(x)	-2	-1	0	1	2

x	-4	-2	0	2	4
g(x)	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{1}{18}$	$\frac{1}{26}$	1 34

12. Match the graph of the function to its inverse.

Date:

Notice that these steps *undo* each other. Functions that undo each other are called **inverse functions**. In Example 1, you can use the equation solved for x to write the inverse of f by switching the roles of x and y.

$$f(x) = 2x + 3$$
 original function $g(x) = \frac{x - 3}{2}$ inverse function

The function g is denoted by f^{-1} , read as "f inverse." Because inverse functions interchange the input and output values of the original function, the domain and range are also interchanged.

х	-2	-1	0	1	2	—
у	-1	1	3	5	7	← ¬
Inver	se func	tion: f	$^{-1}(x)$:	$=\frac{x-}{2}$	3	
						7 I

The graph of an inverse function is a *reflection* of the graph of the original function. The *line of reflection* is y = x. To find the inverse of a function algebraically, switch the roles of x and y, and then solve for y.

Work with a partner. Use the graph of f to sketch the graph of g, the inverse function of f, on the same set of coordinate axes. Explain your reasoning.

Horizontal Line Test

You can use the graph of a function f to determine whether the inverse of f is a function by applying the *horizontal line test*.

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

Are these functions inverses? Why? Example:

The graph of f^{-1} appears to be a reflection of the graph of f in the line y = x.

B.

