

6.6 The Inverse of a Function

Look at the functions f(x) = 2x + 3 and $g(x) = \frac{x-3}{2}$

To get from x to 2x + 3 you will _____ and then _____.

To get from x to $\frac{x-3}{2}$ you will _____ and then _____.

These two functions _____ each other. Thus, they are called _____

How can you tell if two functions are inverses from a table?

Let's look at a table of values for each of the functions f(x) = 2x + 3 and $g(x) = \frac{x-3}{2}$.

X		
f(x)		

X		
g(x)		

Sketch	the	grap	hs	here.

We can see that ____ is a ____ of ___ over the line ____.

The domain of f(x) is the _____ of g(x). The range of f(x) is the _____ of g(x).

Thus, you can tell if two functions are inverses by looking for the x and y values to be switched in the tables.