Algebra 2	
Types of Polynomials and Their End Behavior	

1. Classify the polynomial by giving the degree and name, then describe its end behavior. Tell how many possible zeros it will have on the graph.	2. Classify the polynomial by giving the degree and name, then describe its end behavior. Tell how many possible zeros it will have on the graph.
$g(x) = x^3 + x + 3$	$p(x) = x^5 - 3x^3 + 2$
g(x) = x + x + 3	$p(x) = x^2 - 3x^2 + 2$
3. Classify the polynomial by giving the degree and	4. Classify the polynomial by giving the degree and
name, then describe its end behavior. Tell how	name, then describe its end behavior. Tell how
many possible zeros it will have on the graph.	many possible zeros it will have on the graph.
$m(x) = 4x - 9 - x^3$	$h(x) = -x^4 + 3x^3 - x + 5$
5. Describe the end behavior of this function. Tell	6. Describe the end behavior of this function. Tell
how many possible zeros it will have on the graph.	how many possible zeros it will have on the graph.
J I I I I I I I I I I I I I I I I I I I	
$q(x) = x^6 - 2x^5 - 2x^3 + x + 5$	$h(x) = 5 + 3x^2 - x^7$

Name: _____

7. Evaluate the polynomial using synthetic division. Show your work. $f(x) = -2x^4 + 6x^3 - 3x + 11; x = 4$	8. Use Synthetic Division to divide the polynomials. Show your work and write your answer in the correct form. $(x^4 + 4x^3 + 16x - 35) \div (x + 5)$
9. Divide the polynomials using Long Division. Show your work and write your answer in the correct form. $(4x^4 + 5x - 4) \div (x^2 - 3x - 2)$	10. When dividing $(x^3 - 5x + 3)$ by $(x - 2)$ I made a mistake. Describe the mistake in my synthetic division. Give the correct answer. $2 \begin{array}{c c} 1 & 0 & -5 & 3 \\ 2 & 4 & -2 \\ 1 & 2 & -1 & 1 \end{array}$ $\frac{x^3 - 5x + 3}{x - 2} = x^3 + 2x^2 - x + 1$

Answers in random order

4, quartic, down/down, 4	??	3, cubic, up/down, 3	5, quintic, down/up, 5	$x^3 - x^2 + 5x - 9 + \frac{10}{x + 5}$
Up/down, 7	-129	3, cubic, down/up, 3	Up/up, 6	$4x^2 + 12x + 44 + \frac{161x + 84}{x^2 - 3x - 2}$

Algebra 2

Name:

Notes: Classifying Polynomials by their Degree and Type. Describing End Behavior and Number of Possible Zeros.

Common Polynomial Functions			
Degree	Type (Name)	Example	
0		f(x) = -14	
1		f(x) = 5x - 7	
2		$f(x) = 2x^2 + x - 9$	
3		$f(x) = x^3 - x^2 + 3x$	
4		$f(x) = x^4 + 2x \cdot 1$	
5			

Note: the degree tells how many POSSIBLE zeros the graph of the function will have.

End Behavior:

Look at the LARGEST exponent in the polynomial (it may not be listed first). Is that number even or odd?

Example: Classify the polynomial by giving the degree and name, then describe its end behavior. Tell how many possible zeros it will have on the graph.

a) $f(x) = 2x^4 - 8x^3 + x^2 + 7x - 1$	b) $f(x) = x^3 - 3x^5 - 4$
degree:	degree:
name (type):	name (type):
positive or negative leading coefficient?	positive or negative leading coefficient?
Even or odd degree?	Even or odd degree?
end behavior:	end behavior:
# of possible zeros:	# of possible zeros:
# of possible zeros:	# of possible zeros: