Name \qquad Date \qquad Pd \qquad

ALG2 - 3rd Nine Weeks REVIEW (Part 1)

Part 1: Quadratic Functions (Test 7A)

Write the quadratic function in vertex form. Then identify the vertex.

1. $g(x)=x^{2}+12 x-37 \quad$ Vertex form: \qquad Vertex: \qquad

Find the discriminant of each quadratic equation and then state the number and type of solutions. ** HINT: Be sure you get it in standard form first with it equal to zero.
2. $-v^{2}-2 v+6=7$

Discriminant: \qquad

Number and type of solutions: \qquad
3. $4 m^{2}-4 m+8=7$

Discriminant: \qquad

Number and type of solutions: \qquad
4. $x^{2}-x+6=0$

Discriminant: \qquad

Number and type of solutions: \qquad

Identify the a, b, and c in each equation and then SOLVE using the QUADRATIC FORMULA. **HINT: Find the discriminant FIRST!!!
5. $2 n^{2}-8 n-18=0 \quad a=$ \qquad $\mathrm{C}=$ \qquad Solutions: \qquad
6. $4 b^{2}-64=0$ \qquad $b=$
$\mathrm{C}=$ \qquad Solutions: \qquad
7. The height of a cannonball at any time after being shot into the air is modeled by the function $h(t)=-16 t^{2}+60 t+3.5$ where 3.5 feet is the initial height of the cannonball and $h(t)$ is the height (in feet) of the ball t seconds after being shot into the air. Use your calculator to answer the following questions.
a) From what height was the cannonball launched? \qquad
b) What is the maximum height of the cannonball to the nearest tenth of a foot? \qquad
c) When does the cannonball hit the ground? \qquad
**HINTS:

- Draw a picture! The maximum height will be the y-value of the vertex.
- Find the x -value of the vertex by using the equation for the axis of symmetry $\mathrm{x}=\frac{-b}{2 a}$.
- The height of the cannonball is 0 when the cannonball touches the ground.

Part 2: Solving Systems of Equations (Test 8)

Part 3: Exponent Rules (Test 10)

